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The construction of a theory of bending of thin layered plates is described herein. The 

plates consist of layers having significantly different elastic properties. The investigation 

is carried out by a method of as 

the theory of elasticity [l and 2 i 

mptotic intebration of the three-dimensional equations of 

in the narrow region occupied by the plate. 

The complete state of stress in a layered plate consists of an internal state of stress 

and a state of stress corresponding to edge effects. The internal state of stress is in- 

vestigated in this paper. 

For layered plates consisting of alternating soft and stiff layers with elastic moduli E, 

and E,, respectively, a claesificatioh of the problems will be made according to the mag- 

nitude of the ratio EJE,. It is shown &tin a wide range of variation of E,/E, covering 

almost all possible cases of layered plates the problem of deformation of the plate under 

the action of arbitrary surface loading reduces in each approximation to the usual equations: 

the problem of flexure reduces to a bihannonic equation, and the inplane problem to the 

eqoations of generalized plane stress for some anisotropic plate. 

The asymptotic method of constructing a theory of layered plates permits a unified 
approach to the problem of justification and establishment of the limits of applicability of 

any of the hypotheses upon which the various theories of layered plates are based. More- 

over, this approach makes it possible to determine the shearing and normal stresses on 

planes parallel to the surface of the plate in addition to the flexural stresees. If these 

stresses on planes parallel to the surface play a subordinate role in homogeneous plates, 

the)r can be of primary importance for plates consisting of layers having radically differ- 

ent elastic properties. The determination of these stresses can be very significant for 

solution of the problem of the strength of the bonding between the various layers. 

1. We shall consider a layered plate consisting of alternate stiff and soft layers. We 

shall consider that the top and bottom layers of the plate are stiff layers. We make use of 

an orthogonal system of curvilinear coordinate U, P, y in which the y-axis is perpendicular 

to the plane of the plate. The u - 6 coordinate plane may either pass through any layer 

(soft or stiff) or else coincide with any plane of separation between layers. For definiteness, 
we shall assume that it passes through a soft layer. We shall consider that this layer con- 
sists of two layers having the same elastic properties. We begin the numbering of the layers 

from the u - p plane using negative numbers for the layers located below this plane. The 

soft layers will then have odd numbers and the stiff layers even ones. 

W.e shall consider that the individual layers of the plate have different thicknesses, 

elastic moduli and Poisson’s ratios, but that the elastic moduli of all the soft layers are 

approximately E, and the elastic moduli of all the stiff layers are approximately E,. 
We express the ratio EJE, as some power of the dimensionless thichness & = h/l 

(the plate thickness is 2h and 1 is a characteristic plan dimension of the plate). i.e., we set 
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The range of values of o close to zero, which oorreaponda to a layered plate composed 

of layers having comparable elastic properties has been considered in f31. We shall study 
the range of values a > ft. In this case, a Iayered plate is characterixed .by two smdl para- 
meters, E and f&/E, = ea. 

Without loss of generality we may assume, firstly, that a takes on rational values, 
i.e., o = p/q (where p and q are integem1, and, secondly, that q is uot s very large number. 
These assumptions may elways be satisfied since there exists a certnin arbitrariness in 
the choice of the qnautities E and EJE,. 

The asymptotic integration of the equations of the theory of elasticity will be carried 
out for such values of o by using expsnsions in the parameter 1 = et/e. The transition 
from this parameter to the fondamentai parameters of the layered plete is carried out by A 
to integral powers. 

2. The internal states of stress and strain for a homogsneoua layer were investfgated 
in [4], where expansions in the parameters E were obtained for displacements and stresses. 

To obtain the internal states of stress and strain of an individual layer of a layered plate, 
it is necessary to carry through an asymptotic integration of the Navier equations nsin 

expansions in the parameter A = et/e. This is easily accomplished by analogy to [4 . P 
Let t&(j), U@(j), u,(j) be the components of the dinplacement vector of the j-th 

layer. We introduce the ~mensionless quantities 

The solution of the system of eqnationn obtained from the Navier equations for the 
j;th layer after transforming to the dimensionless variables is constructed in the form 

Here and in whst follows the first soperscript indicates the layer namber to which tbe 
quantity refers and the second superscript is related to the approximation number. 

We obtain equations for ~~(~‘1, up@), 

to 4; this leads to a solution of the form 

t,,@;) which are easily integrated with respect 

(2.2) 

where 

is even 

is odd (2.31 

The brackets refer to the intemal part of s/q. 

The quantities u:?), u$~“, ~2’ are functions of cand ‘I; they are related by the 
following differential Eqs. 
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In addition, we find that 

whtrs H aand 874 ate the reciprocals of the scale factors (i.e., the square roots of the 
metric coefficienta). Eqa. (2.4) are recurrence relations which permit the determination of 

u,$?) , q/c’ (for k23), and v yk(f*) (for k 2 2) in terma of the quantities in the (s - Zq)-th 
approximation. 

We now determine the stresses corresponding to the diapIacementa of Eqs. (2.1). If 
we express the strain components in Kooks’s Law in terms of displacements, transform to 
dimenaionleaa quantities, and then substitute (2.1) for the displacements, we obtain 

f (Jay _ Ex ’ 12 hs&*) 
3 

(61, +? 
_ty) = $e 2 )“S3 $0 (2.2) 

a=0 3 s-4 

The qe&titiea in Eqs. (2.6) and (2.7) with superscript e are polynomials in 4 

The value of r is determined in eccordance with (2.3). The quantities with the sab- 
l crfpt k in Eqa. (2.8) and (2.9) are functions of tand W which are related by the following 
Exprsaaions: 
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(is) _ 1 
&k -2(i +vj) [. 

1 au,,lj*) 
H,cai_ + (k + 1) u,.y::] (4) (2.11) 

q,$) = ‘i i 
(1 + vi) (I - 2Vj) H,HB [ 

-c (1./&y)) + 
‘l 

-g (M&y))] + 

i -V. 

+ (I -1 vj, ,*.L 2vj)d 

(j *+2q) 
@ + 1) ~Y,dil 

(2.12) 

3. We shall consider a layered plate for which 0 < o < 2, acted upon by arbitrary 

surface loading. The boundary conditions have the form 

(24 -1 T=.+ (2, P) CM), 
(24 

%r QYY = Tr+ (Up) for c= fqn. 

t-m = 
(3.1) 

(-?rn) _ 
Q.Y - Ta-(3, p) PJ). Q-C, TY-(18) for t= Lm 

Geometrical and statical conditions of bonding of the layers must be satisfied on the 
planea of contact between layers. We now write out these conditions for the layers 2k and 

2k + 1. i.e., the condition for [- (,k: 

&(?“I = Q?!A 1) cm, UY 
(21.) = ~,(Zkd) 

I 
a,YL) = (?k+l) 

Q,Y (a), 
O W) __ O w+l) (3.2) 
YY YY 

We denote the indices of the first nonzero terms in the expansions (2.7) by SO and s+ 
for the stiff and soft layers, respectively. 

Taking into account (2.1) and (2.7). we obtain the boundary conditioner and the condi- 

tions of bonding of the layers from (3.1) and (3.2). For 6 = (2, we have: 
for the zeroth approximation 

E2e2nex+%%,~1J = T=+(& 7~) w, E2eZni3*+%~~~Y~~L~~) = r,+(& q) (3.3) 

for the s-th approximation 

g,(,4n. 6’1) = () (a$), QYY 
(2n.*.J+r) = () 

P-4) 

The boundary conditions for 4,x., have analogoos forms for the various approximations. 
We now write out the conditions of bonding on the surfaces of the (2k + l)-th (aoft) layer 
(k = 0. 1, 2, . . . . n - 1): 

for G A 62k+t 

y,P~+Z.*) z Ua(2k+1.r) (@j)) ~y(21:+2.r) := uy(21;+1. I) 
(3.5) 

&Q.,,E~~‘~“’ *6,~k+2*a~+r) = E~~~,~+~~x+I J_~~*~~~~L+I. a.+s) 
Pb) 

E2e*i~,Ze~+J~~CsG.~~k+2, &J-S) = Ele21+lex+2 A’. ’ aa. !21:+1, #.+I) (3.6) 
l< 
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In Eqa. (3.3) to (3.8) WC have taken esk = &, / E,, Q+~ = ,?i’2k+x / El . It fol- 

lows from what hes been said earlier that esk and e2k + , are not far from unity. 
We shall now ascertain the poaaibility of satisfying the boundary conditions (3.3) and 

the statical conditions of bonding of the layers (3.6) and (3.8). On the basis of arguments 
which are analogous to those given in Section 3 of [4] f or a homogeneous plate, we arrive 
at the conclusion that aa = 29 and a. = 29 _ p. This means that in the Expressions (2.7) 

for oay. agy and uyy the first 2q terms are zero for a stiff layer, and the first 2q - p 

are zero for a soft layer. From the condition that the indicated terms go to zero, we obtain 

the following relations for the j-th layer: 

1 “‘~~’ 
- -..- 

cjs) ___ o 

fl, a< +va, - 

(3.0, 

If i = 2k (k = f, z,..., zr; -1, -2, “., -m) the conditions (3.9) and (3.10) are 

oatiafied for the approximations s =- 0, 1, 2 ,..., 2q - 1. 
ff, however, i = 2k - 1 (k - 1, 2 ,..., a) or j = 3~ -i_ i (k =-: - 1, -2 ,... , --nz). 

then the conditions (3.9) and (3.10) are aatiafied for s =. 0, i, 2,. . . , 2q - p - f . 

The conditions (3.9) and (3.10) are equivalent to the satisfaction of the Kirchhoff 

assumption. Therefore, the Kirchhoff aaanmption is satisfied for the stiff layers in the 

firat 2q approximations, and in the soft layers for the first 2q - p approximations. The 

first 29 approximations thus fell into two groups. The firat group conaiats of the approxi- 

mations s = 0, 1, 2, . . . . 2q - p - 1. In these approximations the Kirchhoff assumption si 

oatiaficd for the whole layered plate as a unit. The approximations s = 2q - p. 2q - p + I,..., 

2q - 1 form the second group. In these approximations the Kirchhoff assumption holds only 

in the stiff layers of the plate. 
The character of the state of stress in the various layers of the plate also depends on 

the number of leading terms in the expansions (2.7) which go to zero. Let as estimate the 

orders of magnitude of the stresses present in the stiff and soft layera. Considering that 

ao = 2q and $0 = 29 - a, we obtain from (2.6) and (2.7) 
for the stiff layers 

13afk), cr$). Q,, (?I:) _ &F,X’“; ,Q’.), $J.’ _ E&+3; o (2J.J 
YI w &Exf4(s.2.ii) 1) 

for the aoft layers (3.12) 

G (?Jrl), 
(II 

+?J.-I), G (2J.-l) _ E#+t; 
a.4 

Q (21.-l> (?I.-1) 
(LY ’ %Y 

_ &$+3-a; GYROS) _ &@-a 

It follows from (3.11) that the stiff layers act seaentially in flexnre, since the flexnraf 

streaeea a~~‘, 53). and ai$J are the largest. The shearing atreaaea aLa:J, and a(.‘“‘) 
*,Y 

are one order ameiier than the’flexaral otreaaes, and the normal atreasea @1.) are two 
YY 

orders smaller. 

It follows from (3.12) that in the soft faysra the significanca of the shearing stresses 
*(““-1) 

av ’ and #-” of the normal atreasea oYY (a’-*) becomes greater as a increases. 
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This indicates that as o gets larger, the soft layers act more and more in shear aud com- 

pression. We remark that in the first p approximations the shearing stresses are constant 

through the thickneaa of the soft layers. Moreover, as can be seen from (3.121. the order of 

magnitude of these stresses for 1 < o < 2 is greater than the order of ma 
$ 

itude of the 

flexural stresses. This means that for 1 < o < 2, Reissner’s assumption 51 is satisfied in 

the soft layers in the first p approximations. 

4. The expressions for the displacements and stresses in any layer contain six arbitrary 

functions for each approximation. In the s-th approximation the following are arbitrary 

functions: 

for a stiff layer 

for a soft layer 

v,~LI-l, A) (2k-1.8) 
t V&O . 

vYflr-l.s) (2k-l,%?-pA 
. ~XYO 

(!?L-l.??-p+.%) (?I?1.2ppes) 
9 %Yo . 6YYO 

If in the s-th approximation we estimate the six arbitrary functions corresponding 

to a soft layer from the twelve bonding conditions of this soft layer with the two adjacent 

stiff layers, (3.5) to (3.81, we then obtain six constraint conditions [41 between neighhor- 

ing stiff layers in the s-th approximation. The constraint conditions between neighboring 

stiff layers make it possible to eliminate the soft lsyers from consideration. These rela- 

tions contain the twelve arbitrary functions corresponding to the s-th approximation for the 

stiff layers adjacent to the soft layer in question. In addition, these conditions contain 

quantities relating to the previous approximations, which we consider as known when con- 

structing a given approximation. 

For the zeroth approximation the constraint relations for the layers 2k and 2k + 2 

have the form 

t- 5 

(21.+?,2q) 
e2k+q lQyvo --5 

2 (?i.i'?,?QJ 
2ht1 QY,2 

3 (26+?,2d 
= - 

X?!..b, GY3 I 

For a layered plate consisting of n + m stiff layers, there are 6(n + m - 1) constraint 

conditions for the stiff layers and six boundary conditions for (= &,, and (= 5_,,,, for 

each approximation. In these 6 (n + m) equations, 6 (n + m) arbitrary functions occur which 

refer to the stiff layers and correspond to the approximation in question. 

5. We now show that the problem of constructing any approximation reduces to the 

solution of three two-dimensional differential equations. 

We first observe that the’values of some of the quantities are closely connected with 
this approximation, while the values qf others are determined from the previous approxi- 

mations. There are three classes of quantities in the latter group: some are expressed in 

terms of the (s - Zql-th approximation, others in terms of the (S - 2q + pl-th approximation, 

and the third set in terms of the fs - 2q)-th and fs - 2q + pl-th approximations jointly. The 
superscript s which indicates the number of the approximation will not be used to denote 

these quantities. Instead, we shall use the supercripts 8, X. and I for the three types. 

Moreover, we shall agree to drop the superscript indicating layer number oh quantities which 
refer to the layered plate as a whole. 

From the geometric constraint conditions between stidd layers, it follows that 
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* (2% x) = 0 
00 

(0 9) 

On-?, 4 = (2”l. S) 

varo 
- 1 (I i- Verpll G&l - 52n-2) GaYa (a $1 

(zn-3, 31 
(2n-4. w) z V,y2 4 - 2 (if V*& (f2n-3 - c2n_J %yo (a e, 

‘a0 

(5.41 

for the approximations 2g B S < 4g - p - 1 

For the varloas approximationa, if the statical constraint conditions are written oat 
mccessively for each pair of neighboring stiff layers, if these are then added snd the 
boandary conditione taken into accoaat, we obtain as a resalt the &liowfng basic relations: 

for the approximations s = 0 

1 
pv$+ 2P,$+--- 

Ed+ ’ { 
(q+ - rv-1 + (5.8) 

for the approximations 1 <z Q 2 g - p - 1 



for the approximation0 2 9 - p 4 S d 2 Q - i 

p*$;'+ pa';:' = - i?,$-P) - R$"P' (WJ) 

PY$) +zp,~+-. R,$P)-- 2RY$+) 

for the approximations 2 qQs<ltq -p- 1 

pa'," + pa&&_ p @f- p&- na$pf- RLl($P) (US) 
o-f3 

p,$",'+ 2 p,(,i=--3 pY+ QPYt"l_ R f*-P) -_2R b-P) 
YYZ YY3 

for the approximetioae 4 Q - p < s < 4 q - 1 

(5.10) 

(5.11) 

(5.12) 

with 

X’ I (a*:;* b*e_tv c*:,*) = i f @I& l $;._ts c*,_.J - 2 f&A, %.+t* C*t.+J (5.14) 

k=A As-t 

The pnmtitim OIL the left-hand sides of the basic relations (5.8) to 6.12) have the 
following Exprsssiona: 

(5.15); 



For the par&ties with wperscripts r or 8 in (5.13, we have 

(5.18) 

It io sot dffflcult to verify that the right-hand rides of (5.10) to (5.12) are expressed 
in terms of qasatities which are known from the preceding approximations. For example, 
the quantities on the right in Eqs. (5.10) have the form 

R$P) = - 2” (&k_l - && e*,_, [ L (i.($‘* s-f, &-‘* -); V*r_l) -+- 

where 

R,$-P) = - $ Qa*VVv,t-P) 

Qif (5-W) 

Subetitoting (5.15) into the basic relations (5.8) to (5.12) and shifting to the right- 
hand sideo those qaaatities which arc expressed in terms of the preceding approximations, 
we obtafa the following eqaations in BtW, &) #jo, $= 

(5.22) 
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The right-hand sides, ThJ’, T@(‘), Z’v(‘) are expressed in terms of quantities which 

are known from the previous approximations. 

For arbitrary location of the U - 
(2) 6 coordinate plane, all three unknowns, ~‘~0 v 

&G 
$0’ 

and vIS’ . occur in each of Eqs. (5.21) and (5.22). However, the u - fl coordinate plane 

can always be located so that the quantity QI goes to zero*. Then Eqs. (5.21) will contain 

only the unknowns L&, and L$; , and Eq. (5.22) will contain only t.2. This means that 

for such a choice of location ot the u - p coordinate plane the generalized plane stress 

problem and the bending problem uncouple in each approximation. In what follows it will 

always be assumed that the u - p coordinate plane is located so that Q1 = 0. It then 

follows from Eqs. (5.21) and (5.22) that :.tJ, and o$ satisfy Eqs. 

-2. (j,, -- <,,,_,) e,,,L (ray), 2-;;); v~;.) == T,(‘) (lfl) (5.L’::) ( ) 

and that ~,s’ satisfies Eq. 

- Q3”VL$) z T.;(‘) (5.‘i) 

In each approximation the determination r?f L(:!. 
(s) and L’,,,) reduces to the solution 

of the two Eqs. of (5.23). which are the equations of generalized plane stress for some 

anisotropic plate. Under the additional condition that the Poisson’s ratios of all the stiff 

layers are the same, i.e., under the condition ~1;. z-Z Vz, we obtain the equations of gen- 

eralized plane stress for some isotropic plate from Eqs. (5.23) 

- (1 -- v3) Q1 I, (I’$), V&i; V) j’y (‘5) (3.: .-I) 

The quantity Q1 is determined in accordance with (5.17) with v,!; = ~2. 

In each approximation the problem of bending reduces to the solution of the biharmonic 

Eq. (5.24). The plate stiffness is found in terms of Q,, which, as is clear from (S-17), de- 

pends on quantities referring to the stiff layers. Therefore, for 0 < n < 2 the stiffness of 

a layered plate does not depend on the stiffness of the soft layers. 

The Eqs. (5.23) to (5.25) differ for the various approximations only by their right-hand 

sides. Changes in the character of the right-hand sides occur in going from the approxi- 

mations s = 2q - p - 1 to s = 2q - p, from s = 2q - 1 to s = 2q. from s = 4q - p - 1 to 

8 = 4q - p. and from s = 4q - 1 to s = 49. etc. 
For the zeroth approximation the right-hand sides of Eqs. (5.19) and (5.20) have the 

form 

W3) (3.Xi) 

1 
T (0) = __ -- 

1 Ep4 
C(+ 

arrg (ra+6*, --. T,-;_,,) 
- r ____L__~ - 

Y a; 

aIf, eg+;,,& - Ta-L,,) - - 
drl 

For the approximations i < s < 2q - p - 1, the right-hand aides of Eqs. (5.23) to 

(5.25) become zero 

T,(S) =1 0 (a 3). TycS) z- 0 
(.5.X7) 

For the approximation 2q - p < s < 2q - I. we have 

l It can happen that the quantity QI becomes zero when the a - fl plane either passes 
through a stiff layer or coincides with some plane of contact between layers. All the 

equations which have been given must then be altered somewhat. 
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The expreasiona for the quantities on the right aide of (5.28) are given in (5.18) and 
(5.19). 

For the approxbnations2q < s < 4q -- p , we obtain 

6. Let us arnsider alayered plate for which the ratio EJE, is comparabie with the 
square of the relative thickness, i.e., o * 2. In this case we shall use expansions in the 
parameter E for the asymptotic integration of the equations of the theory of elasticity. In 
ascertaining the possibility of aatisfying the boundary conditions and the conditions of 
bonding of the layers, we verify that in the expansions for the stresses OX,, ‘JF.,., (Jiy , all 
terma are retained for the soft layers, but the first two terms are zero for the stiff layers. 
This is equivalent to saying that in the first two approximations (for expansions in E ), 
the Kirchhoff assumption holds only for the stiff layers, 

The character of the state of stress in the soft layers is described in detail in [41 
(see Section 5, State of Stress Cl. 

In the zeroth approximation the constraint conditions for neighboring stiff layers have 
the form 

(t;.“) 

(0.3) 

It follows from (6.2) that 

i.e., the quantity uYo (O) is common for the entire layered plate. It is clear from (6.1) that 

the quantities u(*&“) and v(*&~) are different for different layers. 

Accordingly, the problem of the deformation of a layered plate for which a + 2 reduces 
in the zeroth approximation to a system of 2 fn + m) + l- eqoations in the 2 (n + m) + 1 
unknown functions 

.($oO), $2) (k = 1, 2 ,.._, n; --f, -2 ,... -m) V$$ 

These eauetiona have the form 
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%/.+1 

= 2(: + v*,.+& I I 

tg.+1- car. 
(” cc+?, 0) _ Q”. 0)) _ 

Cl0 

- 52L_1_! 5,l., (uau 
m, 0) _ I.lf1.-?, 0) 

1 
(a) 

(6.5) 

For a symmetrically constructed, three-layered (sandwich) plate, Eqs. (6.51 and (6.61 

are a system of three equations in the three unknowns (2 0) u do , u ‘$;“), and o’$. 

Let us examine a layered plate for which a > 2. When we investigate the possibility 

of satisfying the boundary conditions and the conditions of bonding of the layers, we 

arrive at the conclusion that in the zeroth approximation the loaded layers take the entire 

surface load. This means that for a > 2 a layered plate ceases to act as a unit. 

In the present paper only the internal state of atress has been studied. Therefore, the 

investigation which has been presented makes it possible to refine the differential eqoa- 

tions of the internal problem for layered plates. However, in addition to the refinement 

of the differential eqnationa, it is also necessary to carry throogh a refinement of the 

boundary conditions (for a homageneons plate, see [6]). This is connected with the inves- 

tigation of the states of stress corresponding to the edge effects. 
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